Q.P. Code: 19EC0402

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

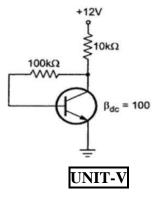
(AUTONOMOUS)

		ELECTRONIC DEVICES AND CIRCUITS		
		(Common to EEE & ECE)		
Time: 3 hours			x. Marks: 60	
		(Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)		
		UNIT-I		
1	a	Analyze the current components in a PN diode and develop the expression for diode	L6	8M
		current equation.		
	b	When a reverse bias is applied to a germanium PN junction diode, the reverse	L5	4M
		saturation current at room temperature is $0.3\mu A$. Determine the current flowing in		
		the diode when 0.15V forward bias is applied at room temperature.		
		OR		
2	a	Draw and explain the V-I characteristics of Zener diode.	L2	6M
	b	Explain Positive and Negative Diode Clippers with neat waveforms.	L2	6M
		UNIT-II		
3	a	With neat circuit diagram and waveforms, illustrate the construction and working of	L2	5M
		Bridge rectifier.		
	b	Draw the circuit diagram of Full wave rectifier with inductor filter and illustrate its	L1	7 M
		operation. Also derive the expression for ripple factor.		
		OR		
4	a	Explain the working principle of CLC or π section filter and also derive the	L2	6M
		expression for ripple factor.		
	b	Demonstrate the working and characteristics of UJT with neat diagram.	L2	6M
		UNIT-III		
5	a	Explain the operation of NPN transistor with neat diagram.	L2	6M
	b	Illustrate the Input and Output characteristics of BJT in CC Configuration. Also	L2	6M
		Obtain the expression for Output collector current equation for a Transistor in CC		
		configuration.		
		OR		

Interpret the operation and characteristics of n-channel depletion type MOSFET with L2 12M diagram.

UNIT-IV

- 7 a Explain the concept of DC and AC Load lines and discuss the criteria for fixing the L2 7M Q-point.
 - b List the different types of Biasing a Transistor and explain the fixed bias of a L4 5M
 Transistor.


OR

8 a Explain Thermal Runaway and Thermal Resistance.

L2 6M

b Solve for the Q-point values for the circuit shown in the Fig.

L5 6M

- **9 a** Determine the parameters Ai, R_i, A_v and R₀ of Common Collector Amplifier using **L5 6M** simplified hybrid model analysis.
 - **b** A voltage source of internal resistance, R_s = 900 Ω drives a CC amplifier using load **L3 6M** resistance R_L =2000 Ω . The CE h parameters are h_{fe} =60, h_{ie} =1200 Ω , h_{oe} = 25 μ A/V and h_{re} = 2 x 10⁻⁴. Solve A_I , R_i , A_v and R_0 using approximate analysis.

OR

10 A CE amplifier is driven by a voltage source of internal resistance R_s 800 Ω and the L1 12M load impedance of R_L =1000 Ω . The h-parameters are h_{ie} =1k, h_{fe} =50, h_{oe} = 25 μ A/V and h_{re} = 2 x 10⁻⁴. Find current gain, voltage gain, input impedance and output impedance using exact analysis and approximate analysis.

*** END ***